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The unsteady laminar flow of an electrically conducting viscous fluid between parallel 
insulating plates subject to a transverse magnetic held is considered. The plates are fixed and 
flow is due to a constant pressure gradient. The induced field is taken into account. The fluid 
is incompressible and of couple stress type. The defining equations are coupled and numerical 
solutions for different values of couple stress parameter are obtained. The velocity and 
induced magnetic field profiles are sketched as functions of time, Hartmann number, and 
magnetic Prandtl number. The velocity decreases with increase in couple stress parameter. 
0 1985 Academic Press. Inc. 

1. INTRODUCTION 

In conventional MHD, Poiseuille flow has been the subject of many 
investigations. Most of these studies pertain to Newtonian fluids. Recently, 
however, a generalization of Newtonian fluid theory has been introduced which 
takes care of the presence of couple stresses in fluids. The generalized form of the 
stress principle of Euler and Cauchy states that the action on any portion of a body 
enclosed by a surface due to the rest of the body is equipollent to a stress vector ti 
and a couple stress vector mj acting over its surface. The non-polar theory of a fluid 
is characterized by the conditions mi= 0, Zi =O, where li is the body moment per 
unit mass. There is no reason a priori to make m, = 0. Essentially if mi is not zero, 
then the action on one part of the body on its neighbourhood cannot be represen- 
ted by a force alone, but rather by a force and a couple. The couple stress fluid 
theory presents models for fluids whose microstructure is mechanically significant. 
The effect of very small microstructure in a fluid can be felt if the characteristic 
geometric dimension of the problem considered is of the same order of magnitude 
as the size of the microstructure. A model for such a fluid has been proposed by 
Stokes [ 11. 

As an example to illustrate the effects of couple stresses on viscous incompressible 
fluids, Stokes has solved the problem of channel and Couette flow also. In order to 
study the effect of a transverse magnetic field on the flow of an electrically conduc- 
ting, viscous, incompressible fluid with couple stresses, Stokes [2] presented the 
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problems of MHD channel and MHD Couette flow. Further extension to his work 
has been done by Soundalgekar and Aranake [3,4]. In all these cases only steady 
state flows are considered and the effects of couple stress parameter and Hartmann 
number on flow are discussed. 

The present study deals with the effect of couple stresses on transient 
hydromagnetic Poiseuille flow based on the model proposed by Stokes [I]. The 
induced magnetic field is taken into consideration. The defining partial differential 
equations, one of the fourth order and the other of the second order, are coupled 
and an exact analytical solution proves difficult. Hence, a numerical solution using 
the explicit finite difference scheme is obtained. 

2. BASIC EQUATIONS AND SOLUTIONS 

We solve the start-up transient flow in the x direction of a conducting, incom- 
pressible, couple stress fluid between parallel insulating plates of infinite extent, in 
the presence of a uniform magnetic field B,, in the z direction. The plates are 
stationary and flow ensues due to a constant pressure gradient suddenly applied to 
the system at time t = 0. The rectangular axes (o, x, y, z) are chosen, the boundary 
walls are given by z = fh. The components of velocity are (~(2, t) 0,O) and those of 
magnetic field (b(z, t), 0, B,) where b is the induced field. 

The governing equations in the absence of body force are 

au B, ab a% ap a% 
P-=--++~--&-V”> at po aZ 

with the initial and boundary conditions 

where 

u(z, 0) = 0, b(z, 0) = 0, 

U(-h, t)=O, u(h, t) = 0, 

b(-h, t)=O, b(h, t) = 0, 

g+l, t)=O, $(h,t)=O, 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

- iYp/ax = P = constant pressure gradient, 

q = couple stress parameter, 

I”,, = permeability of free space, 
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p = coefficient of viscosity of the fluid, 

p = density of the fluid, 

(r = electrical conductivity of the fluid. 

The effect of couple stresses enter through the last term in (2.1). The boundary con- 
ditions (2.4) are due to no slip condition at the plates. Since the plates are 
insulating, the magnetic field at the plates vanishes, giving the boundary condition 
(2.5). Since couple stress vanishes at the plates, then when introduced into the 
defining equations, it gives (2.6). 

Defining the following non-dimensional quantities: 

U=L 
h’p’ 
2P 

M=B,h~ , m 0 
w R /oah3P 

P -Y&F’ 

b 
B=-, 

BoR, 

where 

M = Hartmann number, 

R, = magnetic Reynolds number, 

P, = magnetic Prandtl number, 

v = 14 = kinematic viscosity of the fluid. 
P 

The above equations reduce to 

(2.7) 

(2.8) 

with the initial and boundary conditions 

U(Z, 0) = 0, 

U(-1, T)=O, 

B(-1, T)=O, 

B(Z, 0) = 0, (2.9) 

U(1, T)=O, (2.10) 

B(1, T)=O, (2.11) 

$(-*, T)=O, Z(l; T)=O. (2.12) 

The non-dimensional couple stress parameter K = l/h is the ratio of the material 
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characteristic length I= Jq/p to half the distance between the plates. Couple stress 
fluid theory has been used as a model for blood flow in small arteries. Notable con- 
tributions have been made by Valanis and Sun [S], Kline, Allen, and DeSilva [6], 
Kline and Allen [7], Chaturani and Upadhya [8], Chaturani [9, lo], Chaturani 
and Kaloni [ll], and Chaturani and Rathod [12]. In the flow of blood (which is 
also a conducting fluid) through the arteries, couple stress parameter K is the ratio 
of the characteristic length 1 to the radius r of the artery. Since artery radii are dif- 
ferent, I is kept constant and r varied to yield different K. Values of K are discussed 
in references cited above. Equations (2.7) and (2.8) are coupled and an analytical 
treatment proves difficult. Hence, for different values of K, P,, and M, the above 
equations are solved numerically using the explicit finite difference scheme where 
the derivatives are replaced by their finite difference [ 13, 143, as follows: 

au uijil-uij 
dT= AT ’ 

aB BiJ+,- Bij 
aT= AT ’ 

au Ui+lj- Ui-lj 
az= 242 ’ 

a% Bi+l,-Bi-lj 
az= 262 ’ 

a9 ui,,,-2u,f uielj 
z= (AZ)2 ’ 

a2B 
z= 

Bi+ ,j-2Bij+ B,_ IJ 
(AZ)2 ’ 

a4U Ui,2.J-4Ui+I,j+6Ui,j-4U,--I,!+ Ui-2.1 -= 
az4 W)4 

2 

(2.13) 

where a network of grid points is first established throughout the region 
- 1 d Z d 1 and 0 d T with grid spacings AZ and AT along Z and T, (i, j) 
representing a grid point. 

Rewriting (2.7) and (2.8) in their finite difference form and rearranging we get 

+ (AZ)2 dT(u,+,j-2ujl,+ Ui-Ij) 

+ 2AT- (AZ)4 dT K2(Ui+2J .-‘Ui+ lj+ 6Ui,/-4Ui- lj+ Ui-zJ) (2.14) 
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+ (AZ)2 P, 
dTL (&+I, - 2B, + Bi- lj), (2.15) 

where i = 0, 1, 2, 3 ,..., N and j=O, 1, 2, 3 ,.... 
If all the U, and Bij are known at time level j, (2.14) and (2.15) enable 

calculation of Uij+ , and Bij+ 1 at time level (j + 1) directly. 
For the boundary points i = 0, i = N we have 

U(0, j) = U(N, j) = 0, 

B(0, j) = B(N, j) = 0, 
(2.16) 

g (0,j) = $ (N, j) = 0, 

i.e., 

u- ,j= 2u,, - u,j 
U tw,j=wvj- UN-,,. 

From the initial condition we have 

U(i, 0) = B(i, 0) = 0 (i = 1, 2, 3 ,..., N). (2.17) 

Starting with (2.16) and (2.17) and using (2.14) and (2.15), U and B can evidently 
be obtained at all grid points, advancing from one time step to another. 

3. STABILITY OF THE FINITE DIFFERENCE EQUATIONS 

Since the explicit scheme is used, the largest time step consistent with stability 
should be known. 

For stability of Eqs. (2.14) and (2.15), we proceed thus. Let U, and B, be the 
solutions of Eqs. (2.7) and (2.8) under steady state conditions. Let UT and B, be 
their solution under transient conditions. Putting U = Us - UT and B = B, - B, in 
(2.7) and (2.8) we get 

aBT a2UT d4iJT gL142-$y+~-K2-@, (3.1) 

p 8% au, a2BT 
m==z+az’. (3.2) 
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Since stability implies the choice of AT so that the solution may be bounded, if the 
stability of (3.1) and (3.2) can be established, then (2.14) and (2.15) become stable 
also. 

Following the procedure of Carnahan et al. [lS], the general terms of the 
Fourier expansion for UT and B, at arbitrary time t = 0 are both eiaZ apart from a 
costant, where c1 is a positive costant and i = fi. At a time T later, these terms 
will become 

U, = I)( T) eiaZ 

B,= 4(T) eimZ. 
(3.3) 

Substituting (3.3) in (3.1) and (3.2) expressed in their finite difference form and 
denoting the values of $ and d after one time step as I,Y and qY, and simplifying, we 
get 

where 

2AT 
A = (AZ)’ 

- (cos @AZ- 1) = 2a(cos adz- 1), 

D = $z (i sin adz) = di sin adz, 

E= 2K’AT 
o4 (cos 2uAZ - 4 cos crAZ + 3), 

=2K2e(cos2aAZ-4cosaAZ+3), 

and 

AT 
d=$;, 

AT 
a=(dZ)Zy e=(42)4 

(3.4) 

Expressed in matrix notation (3.4) becomes 

(l+A-E) M2D $ 

Dif’m l+A/P, Ii 1 4 ’ 

i.e., G’ = FG. 
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For stability, the modulus of each eigenvalue of the amplification matrix F 
should not exceed unity. The eigenvalues A1 and AZ are 

Al,,=; 2+/I++ 
[( m > 

k 
i( 

4~2~2 112 
2+A+$-E L4(1 +A-E)(l +A,P,)fF 

) II 
(3.5) m m 

We consider the following cases: 

(i) cosctdZ= -1, then A= -4a,D=0,E=16K2e, 
(ii) cosctdZ= +l, then A=O,D=O,E=O, 

(iii) sin&Z= fl, then A= -2a, D= kid, E=4K2e 

Simplifying (3.5) when D = 0, we get 

L,=l+A-E 

&= 1 +AIP,. 

Case (i). When A = -4a, E= 16K2e, the following are the stability conditions 
to be satisfied: 

4AT -- l - (4~~2 

Case (ii). When A = 0, E = 0, 

12, I = 1, 1121= 1 

thereby satisfying stability requirements. 

Case (iii). When D = &id, A = -2a, E = 4K2e, 

2 1,2= l-a-$--2K2e 
m 

and the stability conditions to be satisfied are 

AT 4T AT -- 
’ - (AZ)2 P,(AZ)‘- 2K2 (4Z)4 

(3.6) 

(3.7) 

’ 
-AT AT 
(AZ)2 + P,(AZ)2 (AZ)4 

-“I)‘-($)‘g]“‘i < 1. (3.8) 
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The values of AT, AZ, P,, K, and M are chosen so that conditions (3.6), (3.7), and 
(3.8) are satisfied, thereby assuring the stability of the explicit finite difference 
scheme used. 

4. DISCUSSION AND CONCLUSIONS 

The values of dimensionless velocity U and dimensionless induced magnetic field 
B are computed as functions of Z and T for different values of the couple stress 
parameter K, Hartmann number M, and magnetic Prandtl number P,. 

To study the nature of variation, the following values of P, = 1.0, M= 5.0, and 
K = 0.04 are considered. The effect of these dimensionless parameters on U and B 
are studied for different dimensionless times T. 

Figures (14) are profiles of U for different T, M, P,, and K. We notice from 
Fig. 1 that velocity increases as time progresses and attains a steady state at 
T = 0.775. These values compare favourably with known steady state velocity values 
[2], the difference at maximum value being 0.5 %. The effect of the Hartmann num- 
ber from Fig. 2 is to retard velocity as in conventional MHD flows. Figure 3 
indicates the effect of magnetic Prandtl number which increases the velocity. An 
increase in couple stress parameter K results in a decrease in velocity which is 
marked for larger Hartmann numbers. The plot shown in Fig. 4 is made for M = 25. 
In all cases the profiles are symmetric as in the case of fluids without couple stress. 

Figures (5-7) indicate the variation of dimensionless magnetic field B with Z for 
K = 0.04, for different T, M, and P,. We find B = 0 at the origin. It increases and 
decreases in magnitude to attain zero at both plates. Since the average value of B is 
zero, the variation of B is positive from Z = - 1 to 0 and negative from Z = 0 to 1. 
The induced field decreases with increase in M and P,. The induced field profiles 
are skew symmetric as in the case of fluids without couple stress. 

The conclusions that couple stress retards flow and that this retardation is more 
marked for higher Hartmann numbers agree with those of Stokes [2]. The present 
study also highlights the variation of velocity and induced field with time and the 
magnetic Prandtl number in addition to the Hartmann number and couple stress 
parameters. 

FIG. 1. Velocity profiles for different T when P, = 1.0, M= 5.0, K=0.04. The Tao.775 curve 
represents steady state. 
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FIG. 2. Velocity profiles for different A4 when, P, = 1.0, K= 0.04, T= 0.075. 

2 -u 

0.16 

FIG. 3. Velocity profiles for different P,, when K=OM, M= 5.0, T= 0.075. 

FIG. 4. Velocity profiles for different K, when P, = 1.0, T= 0.075, M = 25. 
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-B 

FIG. 5. Induced magnetic field profiles for different r, when P, = 1.0, bf= 5.0, K=&&$. 

FIG. 6. Induced magnetic field profiles for different M, when P,= 1.0, K=0.04, T=0.075. 

487 

FIG. 7. Induced magnetic field profiles for different P,, when K=0.04, M= 5.0, T=0.075. 
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